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While we are getting settled...

Follow the steps at:

https://tinyurl.com/sree-drct

to get everything ready to follow along in RStudio!
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Today’s Plan

• 9:00–9:15 – Part I: Conceptual Overview

• 9:15–10:30 – Part II: Estimating Effects with RCT Data

• 10:30–11:00 – Part III: Incorporating Auxiliary Data

• 11:00–11:15 – Break 15 min

• 11:15–11:45 – Part IV: Treatment Effect Heterogeneity

• 11:45–12:15 – Part V: Planning Experiments
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What You Need

• Tutorial website: https://tinyurl.com/edmrct
• RStudio

• Clone repo from Github:
https://github.com/manncz/edm-rct-tutorial/
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Tutorial Structure

We will be alternating between:

• Conceptual descriptions of the methods

• Detailed walk-throughs of the software

• Opportunities for you to run analyses yourself, with our help

Please feel free to ask questions at any time!

• Calling out (unmute yourself if on Zoom)

• Zoom chat

• Any other way you can think of to get our attention
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Conceptual Overview
Estimating Effects with RCT Data

Incorporating Auxiliary Data

Treatment Effect Heterogeneity

Planning Experiments



Experiments in Education Research

“Experiment” = “RCT” = “Randomized Controlled Trial”

• Randomize subjects (students? teachers? schools?) between condition
• Expose subjects to their randomized conditions
• Measure outcome(s) of interest

• Associations between condition and outcomes are causal
• Typical examples:

• A/B tests in online learning
• Field trials of (say) new curriculum vs. business as usual
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Example 1: ASSISTments ETrials

Integrated A/B test platform
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Example 1: ASSISTments E-trials

• Question: Text or video hints?

• Outcome: Complete skill builder?

• n = 683 middle school students

Results,

• Video: 205/337 (61%) completed

• Text: 193/346 (56%) completed
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Example II: Cognitive Tutor Effectiveness Trial

• 73 High Schools & 74 Middle
Schools in 7 states

• Similar schools paired

• In each pair, one school randomized
to treatment, one to control

• Algebra I students in Trt school
used CTAI, Control school used
business as usual

• All students took a posttest at the
end of the year
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Example II: Cognitive Tutor Effectiveness Trial

Results

Average Posttest
Middle High

Year 1 Year 2 Year 1 Year 2
Control 17.4 16.9 10.3 9.7

Treatment 14.3 15.2 10.1 10.6
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Scientific Goals

1. What is the average effect of [intervention] on [outcome]?

• “Intervention” AKA “Treatment” (the thing you’re randomizing)
• Contrast between 2+ conditions
• E.g. access to ChatGPT hint vs teacher-written hint vs no hint
• For today: focus on 2 conditions, “Treatment” vs “Control”
• (those labels may be arbitrary)

• “Outcome”
• Scalar quantity that the intervention might affect
• E.g. student correctness on the next problem (0 or 1)

• “Average Effect” …to be defined soon!

2. How Does the effect vary?

• From one (type of) student to the next
• From one context to the next
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Statistical Goals

1. Get the most out of your data: more data → better estimation!!

• Baseline covariate data
• Historical user data

2. …Without making unnecessary assumptions

• “Design-based” methods
• NO assumptions about confounding, models, etc. etc.

3. Easily

• i.e. without a PhD in statistics
• Use our software package :)

4. Design better experiments to start with
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Types of Variables: Baseline Covariates

• Fixed at baseline

• Unaffected by treatment

Uses:

• More precise estimates

• Explore effect variation
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Example: Covariates in ASSISTments

• Log data. For each previous skillbuilder,
• Completed skill builder?
• # problems attempted / completed?
• Time to mastery
• · · ·

• Demographic data

Don’t use post-treatment variables!
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Auxiliary Data

• Covariate and outcome data from other subjects

• Often: historical data

• Requirements
• Separate sample from RCT
• (some of the) same covariate data as for RCT subjects
• similar outcome data as RCT

Uses:

• More precise estimates

• Planning experiments
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Reiterate Goals

Estimate treatment effects

Using all our data

• Covariates (even high-dimensional)

• Auxiliary/historical data

Without bias or extra assumptions
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Potential Outcomes (Neyman-Rubin)

Consider a randomized experiment with:

• N participants

• One treatment group, one control group

16



Potential Outcomes (Neyman-Rubin)

• The outcome depends on treatment.

If the coin had landed the other way, the outcome may have been different.

• Each subject has two potential outcomes.
One for treatment, one for control.

• We only ever observe one potential outcome.
The other is a counterfactual.
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Potential Outcomes (Neyman-Rubin)
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Potential Outcomes (Neyman-Rubin)

• For each participant i there are two potential outcomes, yti and yci

• Potential outcomes are fixed values, not random
• Let Ti be the treatment assignment of unit i

Ti =

{
1, Unit i is assigned to treatment
0, Unit i is assigned to control

• Let Yi be the observed outcome for unit i. If unit i is assigned to treatment,
we observe yti ; otherwise, we observe yci :

Yi =

yci if Ti = 0

yti if Ti = 1
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Individual and Average Treatment Effects

• The individual treatment effect is

τi = yti − yci

• The individual treatment effect is never observed.

• The average treatment effect (ATE) is

τ̄ =
1

N

N∑
i=1

τi

• The average treatment effect can be estimated.
• Also: average effects for subgroups of subjects (more later)
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Estimating Average Treatment Effects

“The fundamental problem of causal inference”

• We only observe one potential outcome for each subject
• For treatment subjects yt

• For control, yc

• One potential outcome is always missing

• We need to impute the missing potential outcome
• Two approaches to imputation:

1. Use randomization: unbiased, but imprecise
2. Use covariates & and model: biased, but precise
3. Our approach: use both!
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Our Method, in a Nutshell

Step 1:
Train algorithms to predict yc, yt as a function of covariates

f c :X → yc (use data from ctl group)

f t :X → yt (use data from trt group)

Step 2:
Use algorithms to get imputations:

ŷci = f c(Xi)

ŷti = f t(Xi)

Step 3: Calculate m̂i = Pr(Zi = 0)ŷti + Pr(Zi = 1)ŷci
Step 4:
Use randomization-based method to estimate effects on Y − m̂ instead of Y

25
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Important Caveat

For this to be strictly unbiased, we need:

m̂i independent of Ti

Since Yi is a function of Ti, that means we need:

ŷc and ŷt independent of Yi

We can’t use i’s data to train f c and f t!
Solution: re-train f c and f t for each subject i, leaving out i’s data

“Leave-One-Out Potential Outcomes” or “LOOP”
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ŷc and ŷt independent of Yi

We can’t use i’s data to train f c and f t!
Solution: re-train f c and f t for each subject i, leaving out i’s data

“Leave-One-Out Potential Outcomes” or “LOOP”

26



Sticks and Stones May Break my Bones, but Bad Models Won’t Hurt Me

• What if f c and f t are totally wrong and bad??

• Estimate will still be unbiased!

• Standard errors, p-values, and confidence intervals will still be valid!

• (core of inference is based on randomization)

• Covariate adjustment won’t help much

• In moderate/large samples, it won’t hurt either!

27
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Digression: What about old-fashioned regression?

Regression method:
Fit model:

Yi = β0 + β1Ti + β2X1i + β3X2i + . . .

Estimated effect: β̂2

Problem: What if the model is false?

• E.g. Y isn’t linear in covariates

• E.g. What if there should be interactions?

Good news: β̂ is approximately unbiased in large samples

28
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Digression: What about old-fashioned regression?

Why our method?

1. Exactly unbiased in any sample
2. Use any algorithm for f c, f t

• High dimensional covariates
• Flexible for non-linearity, interactions

• ⇒ better imputations
• ⇒ better effect estimates
• We recommend random forest
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What You Need for Our Method

1. Randomized treatment variable

2. Outcome variable

3. Covariates

4. What is the experimental design?

One last digression¹: experimental designs

This is not a promise.
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The Two Questions of Experimental Design

1. Who or What is being randomized?

2. How are they being randomized?

31



Who/What is being randomized?

• Individual randomization

• Cluster or Group randomization

32



How are they being randomized?

• What’s the probability each unit is assigned to treatment?

• How does one unit’s assignment affect other units?
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Examples We’ll Cover

• Individual randomization
• Bernoulli
• Paired

• Cluster randomization
• Paired
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Examples

• ASSISTments E-Trials A/B test
• Students are randomized individually
• Students are randomized independently
• ⇒ Bernoullli

• Cognitive Tutor Effectiveness Study
• Schools are randomized
• Randomization is within pairs
• (if your school is randomized to treatment, its pair must be randomized to

control)
• ⇒ paired cluster design
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Other Designs

To be implemented (hopefully) soon:

• “Completely randomized design”
• At the outset, fix # randomized to treatment, # randomized to control
• Now Ti and Tj are dependent!

• Block-randomized design
• e.g. a separate completely randomized experiment in each classroom
• Paired designs are a special case

Probably won’t get to for a while:

• Bandit designs
• Probability i is assigned to treatment depends on previous subjects’ outcomes
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Estimating Effects in Practice
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dRCT Package Overview

Installation:

• You will need to install the package from Github using the devtools
package in R

• e.g. install_github("manncz/dRCT")

Primary Functions:

loop( Y , Tr , Z , pred , p, ...)

p_loop( Y , Tr , Z , pred , P, n, ...)
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Covariate Adjustment with Bernoulli Randomized Trails (LOOP)

loop( Y , Tr , Z , pred , p, ...)

• Y : outcome vector

• Tr : treatment assignment vector

• Z : matrix of covariates

• pred : interpolation algorithm

• p: probability of treatment

• ...: optional inputs for interpolation algorithm
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LOOP interpolation algorithms

pred

• loop_rf
• loop_ols
• loop_glm
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Covariate Adjustment with Paired Trails (P-LOOP)

p_loop( Y , Tr , Z , pred , P, n, ...)

• Y : outcome vector

• Tr : treatment assignment vector

• Z : matrix of covariates

• pred : interpolation algorithm

• P: vector of pair assignments

• n: optional vector of cluster sizes
• ...: optional inputs for interpolation algorithm
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P-LOOP interpolation algorithms

pred

• p_ols_po
• p_ols_v12
• p_ols_interp
• p_rf_po
• p_rf_v12
• p_rf_interp
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Real Data Example: Texas School Data

• AEIS: School-level data from Texas Education Agency from 2003-2011

• > 3,000 schools

• TAKS (standardized test) passing rates

• Thousands of additional possible covariates

42



Real Data Example: Synthetic School-Level RCT

• Inspired by the Cognitive Tutor Algebra I study (Pane et al. 2014)

• RCT Sample: 50 Texas middle schools

• Treatment: Alternative 8th grade mathematics curriculum

• Design: Schools randomly assigned to implement new curriculum or
continue standard in the 2007/8 school year

• Outcome: 2008 8th grade math TAKS passing rate

• Pretest: 2007 8th grade math TAKS passing rate
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Your Turn!

1. Follow along while we talk through 01-explore-aeis-data.Rmd
2. Work through 02-effect-est.Rmd

• Effect estimate for Bernoilli randomized trial
• Effect estimate for paired randomed trial
• Effect esitmate for paired cluster randomed trial

3. Flag any of us down as you have questions!
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Conceptual Overview

Estimating Effects with RCT Data

Incorporating Auxiliary Data
Treatment Effect Heterogeneity

Planning Experiments



Auxiliary Data

By “Auxiliary Data” we mean a dataset that meets these criteria:

1. Doesn’t include data from RCT participants
2. Includes covariate data
3. Includes outcome data

Examples:

• A/B test: historical log data from users who worked on similar modules
before the experiment started

• Field trial: Administrative (e.g. SLDS) data from students in schools that
were not part of the RCT

Note: we have sometimes called this the “remnant”
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What use is more data??

• Already imputing potential outcomes with f c and f t in LOOP

• f c and f t can be flexible, high dimensional

• They are fit to representative data

Limits on f c and f t

• RCT sample size might be too small to fit really good models

• Human-adaptive modeling: no good!
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Example 1: ASSISTments

Covariates:

• Log data. For each previous skillbuilder,
• Completed skill builder?
• # problems attempted / completed?
• Time to mastery

• Demographic data

Auxiliary Data:

• Observational
• Students who were not randomzied

• Previous users
• Current users not assigned to that skillbuilder

• Same covariates available
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Treatment

Control

Observational

RCT
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Treatment

Control

Observational

RCT
Step 1:
Train Model ŷ(·) : x → Y

With auxiliary data
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Treatment

Control

Observational

RCT
Step 1:
Train Model ŷ(·) : x → Y

With auxiliary data

Step 2:
Extrapolate
With fitted model & RCT
data

ŷ(xi)

ŷ(xj)
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Treatment

Control

Observational

RCT
Step 1:
Train Model ŷ(·) : x → Y

With auxiliary data

Step 2:
Extrapolate
With fitted model & RCT
data

ŷ(xi)

ŷ(xj)

Step 3:
Use ŷ(x) as a
“super-covariate”
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Auxiliary Data

Basic idea: Use auxiliary-based predictions ŷ(xi) as a
covariate in the RCT.

• The function ŷ(·) is fit on auxiliary data

• The covariates x are pre-treatment

• ⇒ ŷ(x) is invariant to treatment assignment

• ŷ(x) might be an amazing covariate

• …or it might not
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Special Prediction Algorithm for LOOP

• If ŷ(x) predicts Y really well, we would expect a linear relationship
• ⇒ fit OLS models within LOOP

• Maybe ŷ(x) isn’t that much better than other covariates
(or, maybe it’s useless)

• ⇒ use random forest within LOOP

• Let the data decide!
• pred=reloop
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Incorporating Auxiliary Data in Practice
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Incorporating Auxiliary Information

loop( Y , Tr , Z , pred = reloop , p, yhat , ...)

• Y : outcome vector

• Tr : treatment assignment vector

• Z : matrix of covariates

• pred = reloop : specify auxiliary data interpolation algorithm

• p: probability of treatment

• yhat : vector of auxiliary predictions

• ...: optional inputs for interpolation algorithm
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Real Data Example: Texas Schools

• AEIS data includes thousands of schools not in our RCT

• A great setting for integrating auxiliary and RCT data

Other Texas
Schools

RCT

AEIS Data
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Your Turn!

1. Work through 03-integrate-aux.Rmd
• We fit an auxiliary model and generate predictions to input as yhat

2. Apply what you learned in 04-effect-estABtest.Rmd
3. Flag any of us down as you have questions!
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Conceptual Overview

Estimating Effects with RCT Data

Incorporating Auxiliary Data

Treatment Effect Heterogeneity
Planning Experiments



Heterogeneous Treatment Effects

Recall: The individual treatment effect is τi = yti − yci

• Until now, our goal has been the average treatment effect (ATE)

τ̄ =
1

N

N∑
i=1

τi

• We can use the same tools for other models of τi:
• Averages for subgroups (subgroup effects)
• Moderation: look for patterns in effects↔covariates τi|xi

• Predict an individual’s treatment effect τ̂i
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Example
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Example
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Conditional Average Treatment Effect

• The conditional average treatment effect (CATE) is

τ(x) = E[τi|Xi = x] = E[yti − yci |Xi = x]

• The expected treatment effect conditional on having a specific set of
covariate values.

• “iCATE”: expected effect based on i’s covariates,

τ(xi) = E[τi|Xi = xi]
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We’re already almost there

In order to get the ATE, we already have imputations:

ŷci = f c(Xi)

ŷti = f t(Xi)

And weighted average: m̂i = Pr(Zi = 0)ŷti + Pr(Zi = 1)ŷci
(For each i, we use everyone but i to estimate functions f c(·) and f t(·).)
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We’re already almost there

Also: an unbiased estimator for τi (!):

τ̂i = Ui (Yi − m̂i)

where

Ui =

 1
pi

if Ti = 1

−1
1−pi

if Ti = 0

If
Tim̂i

Then
E[τ̂i] = τi
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Modeling with τ̂

τ̂ will typically be too noisy to be of much use by itself
. . . but it can be used for modeling

• Estimating subgroup effects

• Parametric moderation modeling

• Non-parametric (or ML) modeling for the iCATE
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Subgroup Effects

The sample mean of τ̂ for a subgroup is unbiased for the CATE (conditional
average treatment effect) in that subgroup.
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Moderation Analysis

Example: OLS
Fit model:

τ̂i = β0 + β1Xi1 + · · ·+ βkXik + ϵi

• If τ is linear in X1, . . . , Xk then estimated slopes β̂ are unbiased for true
slopes

• If not, estimated slopes β̂ are unbiased for “populaiton regression”—slopes
you would estimate if you had true τ instead of estimates

Use heteroskedasticity-robust SEs
OLS is only one example

65



Moderation Analysis

Example: OLS
Fit model:

τ̂i = β0 + β1Xi1 + · · ·+ βkXik + ϵi

• If τ is linear in X1, . . . , Xk then estimated slopes β̂ are unbiased for true
slopes

• If not, estimated slopes β̂ are unbiased for “populaiton regression”—slopes
you would estimate if you had true τ instead of estimates

Use heteroskedasticity-robust SEs
OLS is only one example

65



Moderation Analysis

Example: OLS
Fit model:

τ̂i = β0 + β1Xi1 + · · ·+ βkXik + ϵi

• If τ is linear in X1, . . . , Xk then estimated slopes β̂ are unbiased for true
slopes

• If not, estimated slopes β̂ are unbiased for “populaiton regression”—slopes
you would estimate if you had true τ instead of estimates

Use heteroskedasticity-robust SEs

OLS is only one example

65



Moderation Analysis

Example: OLS
Fit model:

τ̂i = β0 + β1Xi1 + · · ·+ βkXik + ϵi

• If τ is linear in X1, . . . , Xk then estimated slopes β̂ are unbiased for true
slopes

• If not, estimated slopes β̂ are unbiased for “populaiton regression”—slopes
you would estimate if you had true τ instead of estimates

Use heteroskedasticity-robust SEs
OLS is only one example

65



Estimating iCATEs

iCATE: average treatment effect for subgroup with x = xi

Use any old model for τ̂(x), as long as it fits well
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Advantages of This Approach

• Can model yC with any model–including ML
• Regardless of heterogeneity research question
• Model need not be correct

• Flexible with regards to model for τ as a function of x
• Built off of unbiased τ̂

• If model for τ |x is wrong, may still get biased estimators
• . . . but probably less biased than methods built on biased τ̂
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In the Package

You can use the function getITE to retrieve the ITE estimates from a LOOP
estimator.

• This function will work for an estimator built with or without auxiliary data,
which allows us to improve precision further.

• However, it is currently only for Bernoulli-randomized experiments.

• Once you have retrieve the estimates, choose your favorite model and do
some regressing!
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Your Turn!

1. Work through 05-heterogeneousEffects.Rmd
• We fit retrieve ITE estimates from the model in 04-effect-estABtest.Rmd.
• We then estimate the CATE by regressing these estimates on the covariates.

2. Flag any of us down as you have questions!
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Conceptual Overview

Estimating Effects with RCT Data

Incorporating Auxiliary Data

Treatment Effect Heterogeneity

Planning Experiments



What You Need

• We’ll be using the dRCTpower package to plan experiments

• Main function is run_app
• You can download the package in R using the following commands:

install.packages("devtools")
devtools::install_github("jaylinlowe/dRCTpower")

• We will be using the aux_dat_small.csv file from the Github repo
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Main Question

How to choose a sample size for our experiment, particularly if auxiliary
data will be incorporated?
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Overview

• Incorporating auxiliary data in our analysis can improve precision, meaning
we can have a smaller sample size with the same power

• Gain in precision is determined by how predictive a model fit on the auxiliary
data is for the RCT

• But....we don’t have the RCT data!
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Method

1. Break auxiliary dataset into subgroups

2. For each subgroup, treat it as the RCT and the rest of the data as the
auxiliary data

3. Calculate the required sample size under this framework
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Requirements

Large auxiliary dataset that:

• is substantially larger than the RCT will be

• has covariates

• has the same outcome of interest as the RCT
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Limitations

• Method is only plausible if it’s reasonable to assume the RCT looks like some
subgroup of the auxiliary data, even if we don’t know what subgroup that is

• Dangerous to assume RCT looks like any one subgroup

• Dangerous to choose most optimistic option

75



Limitations

• Method is only plausible if it’s reasonable to assume the RCT looks like some
subgroup of the auxiliary data, even if we don’t know what subgroup that is

• Dangerous to assume RCT looks like any one subgroup

• Dangerous to choose most optimistic option

75



Limitations

• Method is only plausible if it’s reasonable to assume the RCT looks like some
subgroup of the auxiliary data, even if we don’t know what subgroup that is

• Dangerous to assume RCT looks like any one subgroup

• Dangerous to choose most optimistic option

75



General Power Calculations

n = 2σ2 (ξ1−α/2 + ξ1−β)
2

∆2
A

• ξ1−α/2 is the critical value obtained from a normal distribution for Type I error
equal to α.

• ξ1−β is the critical value from a normal distribution for Type II error rate β.

• ∆A is the effect size, typically 20% of the standard deviation of the outcome
in the population

• σ2 is the true variance of the outcome in the population, typically replaced
with an estimate from a sample
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Our Modification

• We replace σ2 with an estimate from each subgroup

• Shiny app gives two estimates, one if you were to use auxiliary data in
analysis, and one without

• ”Without auxiliary data” estimate is variance of outcome for that subgroup

• ”With auxiliary data” estimate is variance of the residuals, (yi − ŷi), where ŷi

are out-of-bag predictions from model
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Defining Subgroups

Three options:

1. Categorical Variable
• Divide based on levels of categorical variable
• Can create your own categorical variables

2. Numerical Variable
• Divide into 10 (adjustable) equally sized groups
• May need to divide into fewer if there isn’t enough variation

3. Best-Worst Case Scenario
• Divide based on how predictive we expect the auxiliary model to be for that

group
• Good starting point
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Shiny App Demo
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